icp-oes发射光谱仪
icp-oes发射光谱仪
icp-oes发射光谱仪
icp-oes发射光谱仪
icp-oes发射光谱仪
icp-oes发射光谱仪

icp-oes发射光谱仪

价格

订货量(个)

¥398000.00

≥1

联系人 文先生

㜉㜊㜈㜉㜊㜆㜄㜄㜋㜃㜋

发货地 北京市
立即询价 进入商铺
扫码查看

扫码查看

手机扫码 快速查看

在线客服

商品参数
|
商品介绍
|
联系方式
功率 1350w
检测器 大面积CCD检测器
光室 38℃
光源 固态光源
品牌 钢研纳克
商品介绍
钢研纳克ICP光谱仪测定液态高纯硫酸锰中的钙镁
摘 要:液态高纯硫酸锰溶液是制备硫酸锰粉末的半成品,需对其钙镁含量进行严格的把控。液态高纯硫酸锰中锰 含量高达160g/L,选择标准加入法消除测定过程中的基体效应。综合考虑各条谱线的谱图、背景轮廓和强度值, 终选择了干扰较少的Ca315.887nm和Mg285.213nm作为待测元素的分析线。钙和镁校准曲线的相关系数R2分别为 0.9999和0.9997,线性关系良好,方法中钙和镁的测定下限分别为0.0117|ig/mL和0.0063|ig/mL,结果相对标准偏 差(RSD,n=11)为0.70%和0.89%,回收率为98.2%和90.0%,测定结果准确可靠;并提出了适合生产企业批量快速 测定的变异系数法,与标准加入法的测定值基本一致,可一次测定多个样品,工作效率得到明显提高,已应用于实 际样品分析,结果满意。
近年来,锂离子电池作为新一代环保高性能电池已成为电池产业发展的重点方向。随着市场对锂电池需 求量的不断增长,硫酸锰作为生产锰酸锂电池的基本原料之一,其市场需求量也在快速增加[1]。锂电池正极 材料作为其关键材料,占原材料总成本的40%以上,并且其性能直接影响锂电池的各项性能指标[2]。随着锂 离子电池正极材料从单一的钻酸锂或锰酸锂发展到配位精确,杂质浓度控制严格的镍钻锰酸锂三元或二元材 料之后,对硫酸锰的纯度要求很高[3~7],尤其是必须控制钾钠钙镁等有害杂质的含量,其中高纯硫酸锰中钙 镁杂质含量之和要求耳0.05%。[8~12]。对于锂电池来说,钙镁离子会堵塞离子选择性电极的小孔,阻止电解反 应的发生。因此制备高纯一水硫酸锰是生产电池正极材料的关键。高黏度液态硫酸锰中钙镁的测定是过程质 量控制的重要指标,根据现有资料并无成熟的方法可以准确测试,电池用硫酸锰行业标准[13]采用标准曲线 法不加入基体进行测试,结果偏差较大,现有文献中采用的萃取方法较为繁杂,测试效率低下[14, 15]。因此 急需开发一套适用于生产企业批量快速测定液态高纯硫酸锰中钙镁的方法。
本文提出使用电感耦合等离子体发射光谱仪,运用标准加入法测定液态高纯一水硫酸锰中的钙镁含量, 并提出了变异系数法应用于现场批量快速测定,将两种方法进行对比,取得了满意结果。
2结果与讨论 2.1分析谱线的选择
对同一元素,ICP-OES有多条谱线可供选择,但是由于 基体的影响和其他元素对待测元素可能产生的干扰,需对推2结果与讨论 2.1分析谱线的选择
对同一元素,ICP-OES有多条谱线可供选择,但是由于 基体的影响和其他元素对待测元素可能产生的干扰,需对推
荐的谱线进行干扰考察和选择。本方法中由于样品中锰含量
很高,需考虑基体对分析线的影响。
预先在仪器上选择Ca422.673 nm、Ca317.933 nm、Ca315.887 nm和Mg279.553 nm、Mg280.271 nm、Mg285.213 nm 6条分析谱线进行筛选,比较了各条谱线的 谱图、背景轮廓和强度值,并作出了相应的背景扣除,有效减少了背景的影响。Ca315.887 nm和Mg285.213 nm 作为待测元素的分析线时,在分析线的旁边没有干扰,终选择了 Ca315.887 nm和Mg285.213 nm作为待测 元素的分析线。
2.2校准方法的选择
仪器分析中常见的校准方法有3种,即工作曲线法、内标法和标准加入法,在无法制得与待测样品基 体一致的校准溶液时应选择标准加入法。由于待测硫酸锰样品纯度很高,很难找到纯度更高的硫酸锰试剂进 行基体匹配,所以选择标准加入法进行校准,以消除检测过程中样品本身的基体效应。
2.3校准曲线和检出限
在确定好的仪器工作参数下,将制备好的校准溶液喷入仪器,建立校准曲线;对试剂空白溶液进行11 次测定,并以测定结果的3倍标准偏差为方法检出限,检出限的3倍作为方法定量下限。各元素校准曲线的 线性回归方程、相关系数、检出限和定量下限见表2。
2.4样品分析与精密度、加标回收试验
按照实验方法及确定的检测条件,将液态一水硫酸锰的样品进行了测定,并进行了精密度和加标回收试 验,结果见表3。
2.5生产企业快速测定方法研究
标准加入法虽能够准确测定,但对于生产企业来说 每次只能测试一个样品,测试效率较低。若将水标测定 的数值进行校正,即通过变异系数法换算相关系数,解决标准曲线法测定结果的偏差,就可以快速、准确地分析高纯硫酸锰溶液中的钙镁。
变异系数公式:
式中泛―变异系数的平均值;
分析试液中加入钙/镁标液和样品中钙/镁的浓度之和,单位pg/mL;
X* 一分析试液中加入钙/镁标液的浓度,单位pg/mL。
水溶液标准曲线测试加标后样品的结果如表4。
由公式换算可分别得出钙和镁的变异系数:
Ca: [(10.18-6.69)/5+(13.94-6.69)/10+(17.68-6.69)
/15+(20.86-6.69)/20]/4=0.716
Mg: [(0.27-0.19)/0.1+(0.36-0.19)/0.2+(0.61-0.19)
/0.5+(1.03-0.19)/1]/4=0.857
将标准曲线法测试的结果除以变异系数进行校正:
Ca: 66.87/0.716=93.93^g/mL; Mg: 1.86/0.857=2.17^g/mL
3结论
本文使用电感耦合等离子体发射光谱法测定液态高纯硫 酸锰中的钙和镁,采用标准加入法去除基体效应,测定结果 相对标准偏差(RSD/%)小于1%,加标回收率在90.05%~
98.2%之间,测定结果准确可靠;并提出了适合生产企业批量快速测试的变异系数法,工作效率可得到明显提高,已应用于客户现场生产指导实际样品分析,结果满意。
icp-oes发射光谱仪,ICPOES厂家排行
钢研纳克国产ICP光谱仪测定锂离子电池电解液中的杂质元素
1 前言
锂电池电解液是电池中离子传输的载体。一般由锂盐(六氟磷酸锂)和有机溶剂(酯类)组成,金属杂质直接影响锂离子在电解液中的传导以及电极的容量和寿命。金属杂质离子具有比锂离子低的还原电位,因此在充电过程中,金属杂质离子将首先嵌入到碳负极中,减少了锂离子嵌入的位置,减少了锂离子电池的可逆容量。高浓度的金属杂质离子的含量不仅会导致锂离子电池可逆比容量的下降,而且金属杂质离子的析出还可能导致石墨电极表面无法形成有效的钝化层,使整个电池遭到破坏,但低浓度的金属杂质离子对电池性能影响不大。各金属含量应小于0.002%,一般应为0.001%左右。[1]但实际生产中要求更低,实验中使用客户实际样品,应客户要求待分析元素为K、Na、Ca、Fe、Pb、Cr。
2.实验部分
2.1 仪器简介
电感耦合等离子体原子发射光谱仪简称 ICP-AES ,文中使用我公司推出的全谱型光谱仪Plasma2000。
2.2 样品前处理
样品为有机液态溶液。采用两种前处理方法:
方法(1)无机进样[2]。将5g样品置于聚四氟乙烯烧杯中,200℃加热至干,稍冷后加20mlHNO3,低温至全部溶解、蒸干,加10mlHNO3低温反应10分钟后加入1mlH2O2,低温待反应完毕后冷却,然后定容到25ml容量瓶中。
方法(2)直接有机进样。将5g样品置于塑料瓶中,加入不同质量的标油,再加入一定量的无水乙醇,定量到10g,摇匀。
2.3 仪器参数
Plasma2000:
方法(1):功率 1.20KW,冷却气流量 15.0 L/min,辅助气流量 0.5L/min,载气流量 0.5 L/min,蠕动泵泵速 20 rpm。玻璃雾化系统和矩管。
方法(2):功率 1.35KW,冷却气流量 18.0 L/min,辅助气流量 0.5L/min,载气流量 0.35 L/min,蠕动泵泵速 20 rpm,氧气流量10ml/min。带冷却功能的玻璃雾化系统和矩管。
4.结论
使用电感耦合等离子体全谱仪ICP-2000分析锂离子电池电解液时,直接有机进样无需前处理,空白低,因此大大缩短了实验时间,提高了仪器的检出能力,可以测试1μg/g的元素含量。使用标准加入法可以消除基体对结果的干扰。
icp-oes发射光谱仪,ICPOES厂家排行
Plasma 2000仪器特点
稳健高效的全固态光源
全固态射频发生器,体积小、效率高,全自动负载匹配,速度快、精度高,能适应各种复杂基体样品及挥发性有机溶剂的测试,具有优异的长期稳定性。
垂直炬管的设计,具有更好的样品耐受性,减少了清洁需求,降低了备用炬管的消耗。
简洁的炬管安装定位设计,快速定位,精确的位置重现。
实时监控仪器运行参数,高性能CAN工业现场总线,保障通讯高效可靠。
精密的光学系统
中阶梯光栅与棱镜交叉色散结构,使用超纯SiO2棱镜,高光路传输效率,保证了深紫外区的元素测量。
优化的光学设计,采用非球面光学元件,改善成像质量,提高光谱采集效率。
光室多点充气技术,缩短光室充气时间,提高紫外光谱灵敏度及稳定性,开机即可测量。
光室气路独立,可充氮气或氩气。
包围式立体控温系统,保障光学系统长期稳定无漂移。
进样系统
仪器配备系列经过优化的进样系统,可用于有机溶剂、高盐/复杂基体样品、含氢氟酸等样品的测试。
使用一体式炬管,易于维护,转换快速,使用成本低。
使用质量流量控制器控制冷却气、辅助气和载气的流量,流量连续可调,保障测试性能长期稳定。
4通道12滚轮蠕动泵,泵速连续可调,确保样品导入稳定性。
检测器
大面积背照式CCD检测器, 全谱段响应,高紫外量子化效率,抗饱和溢出,具有极宽的动态范围和极快的信号处理速度。
一次曝光,完成全谱光谱信号的采集读取,从而获得更为快速、准确的分析结果。
同类产品中靶面尺寸,百万级像素,单像素面积24μm X 24μm,三级半导体制冷,制冷温度-35℃,具有更低的噪声和更好的稳定性。
软件系统
人性化的界面设计,流畅易懂,简便易用,针对分析应用优化的软件系统,无须复杂的方法开发,即可快速开展分析操作。
多窗口多方法分析程序,可同时测量、编辑、查看不同的方法数据。
软件谱线库具有7万多条谱线库,智能提示潜在干扰元素,帮助用户合理选择分析谱线。
提供多样化的标准系列编辑模式,支持先测试后设置标准、“三明治”方法测试样品等多种曲线校准模式。
软件支持标准曲线法、标准加入法等分析方法,具有扣除空白、内标校正、干扰校正等多种数据处理方法。
轻松的测试方式设置,直观的测试结果显示,具有多种报表输出格式。
icp-oes发射光谱仪,ICPOES厂家排行
钢研纳克Plasma2000ICP光谱仪电感耦合等离子体发射光谱仪测定球磨铸铁中Si、Mn、P、La、Ce、Mg含量
关键词:Plasma2000,ICP-OES,球磨铸铁,全谱瞬态直读
引言
球墨铸铁是一种高强度铸铁材料,其综合性能接近于钢,用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。除铁元素外,它的化学成分通常为:含碳量3.0~4.0%,含硅量1.8~3.2%,含锰、磷、硫总量不超过3.0%以及适量的稀土、镁等球化元素。因此球墨铸铁中的Si、Mn、P、La、Ce 、Mg元素测定十分重要。本文采用Plasma2000电感耦合等离子体原子发射光谱仪(ICP-OES) 对球墨铸铁中的Si、Mn、P、La、Ce、Mg元素含量进行了测定,标样和样品测试均得到了满意的结果。
仪器特点
Plasma 2000 电感耦合等离子体发射光谱仪(钢研纳克检测技术股份有限公司)是一种使用方便、操作简单、测试快速的全谱ICP-OES分析仪,具有良好的分析精度和稳定性。仪器特点如下:
 高效固态射频发生器,超高稳定光源;
 大面积背照式CCD芯片,宽动态范围;
 中阶梯光栅与棱镜交叉色散结构,体积小巧;
 多元素同时分析,全谱瞬态直读。
样品前处理
参考国标GB/T 24520-2009《铸铁和低合金钢 镧、铈和镁含量的测定 电感耦合等离子体原子发射光谱法》,准确称取0.5 g(精确至0.0001 g)试样,加入盐酸、硝酸混合酸分解,高氯酸冒烟,以混酸溶解盐类,冷却状态下加入氢氟酸,试液稀释至一定体积,干过滤。Si稀释10倍测定,其他元素直接测定。
样品溶解图解
仪器参数
仪器工作参数 设定值 仪器工作参数 设定值
射频功率/W 1250 辅助气流速/L·min-1 0.5
冷却气流速/L·min-1 13.5 蠕动泵转速/rpm 20
载气流速/L·min-1 0.5 进样时间/s 25
标准样品
选用标准样品进行测试
标样编号 标样名称
GBW(E)010188a 稀土镁球墨铸铁
典型元素谱线
准确度及稳定性
标样GBW(E)010188a测试结果
元素 Plasma2000测定值/% RSD(n=11)/% 认定值/% 标样不确定度/%
实际样品测试
样品编号 1# 2#
元素 Plasma2000/% 参考结果*/% Plasma2000/% 参考结果*/%
*参考结果为其他实验室测定值
方法检出限
在选定工作条件下对标准溶液系列的空白溶液连续测定11次,以3倍标准偏差计算方法中各待测元素检出限,以10倍标准偏差计算方法中各待测元素的测定下限。
各元素的谱线和方法检出限
元素 谱线/nm 方法检出限/% 测定下限/%
结论
参考标准GBT 24520-2009,利用Plasma 2000电感耦合等离子体发射光谱仪对球磨铸铁中Si、Mn、P、La、Ce、Mg元素进行测定,方法检出限在0.00001%~0.00165%之间,检测结果与标样认定值一致。该方法应用范围广泛,对火花光谱无法检测的非白口化样品也能分析检测。 Plasma 2000能够快速、准确、可靠的测定球墨铸铁中的Si、Mn、P、La、Ce、Mg元素。
仪器优点
1. 优异的光学系统
2. 固态高效射频发生器,体积更加小巧
3. 流程自动化,状态监控及自动保护
4. 科研级检测器,极高的紫外量子化效率
5. 强大分析谱线
6. 信息直观丰富
7. 多窗口多方法
8. 编辑功能强大
9. 智能谱图标定
10.智能干扰矫正
-/hbahabd/-
联系方式
公司名称 钢研纳克检测技术股份有限公司
联系卖家 文先生 (QQ:415905311)
电话 㜄㜉㜄-㜌㜇㜉㜊㜇㜉㜊㜊
手机 㜉㜊㜈㜉㜊㜆㜄㜄㜋㜃㜋
传真 㜄㜉㜄-㜌㜇㜉㜊㜇㜉㜈㜈
地址 北京市